

Course: Wind and Marine Energy

ZWVH17WHE Wind and Marine Energy 2021-2022 5 English W.F.J. Swart Ranshuysen Modes of delivery

Assessments

Practical / Training Tutorial

Assignment WHE - Other assessment Lab WHE - Other assessment Theory - Computer, organised by STAD examinations

credits: 5

Learning outcomes

After successful completion of this module, the student is able to:

- Perform a resource assessment on basis of wind speed measurements
- Interpret and analyze wind turbine performance measurements
- Make motivated wind turbine design choices
- Develop a mathematical/physical model to optimize a wind turbine design in terms of energy production, loads and costs
- Determine acoustic noise levels on a wind turbine
- Keep an orderly lab notebook according to the lab notebook guidelines
- Make a quantitative assessment of measurement and calculation errors and uncertainties
- Understand the-state-of-the-art and the potential of marine energy
- Report (in written form) the results of the experiments and analyses in a scientifically correct and clear form

Included in programme(s)

European Master in Renewable Energy

Content

In terms of scientific and technical contents this module will treat the following aspects of wind energy:

- Introduction into wind energy
 - The wind energy sector in a bird view: history, markets, scenario's and roadmaps,
 - Technological challenges and concepts
 Off-shore wind energy versus on-shore wind energy
- Wind climate and resource assessment (measurements and modelling)
- Rotor design (aerodynamics, aero-elasticity, acoustics, costs) Introduction into Marine energy

School(s) Institute of Engineering