

Course

English

J. Bekkering

Course: PowerzHydrogen			
Course code	ZWVH19P2U	Modes of delivery	
Name	Power2Hydrogen	Assessments	
Study year	2021-2022		
ECTS credits	5		

Assignment 1 - Assignment Assignment 2 - Assignment

Education

credits: 5

Learning outcomes

Language Coordinator

By completing the module the student demonstrates knowledge and understanding of:		
	theoretical constructs and scientific frameworks relevant	
to power-to-hydrogen		
E2.2.a.2	main sources of energy dissipation in electrolysers and	
fuel cells		
E2.2.b.1	power-to-hydrogen value chains for mobility	

And is able to:

E2.1.c.1 design scientific experiments to analyse the performance of electrolysers

E2.3.e.1 define and measure the energy efficiency of electrolysers archive and communicate effectively experimental E1.1.c.1 results

Included in programme(s)

European Master in Renewable Energy

Content

Theory (3 EC):

- Electrochemistry basics
- Electrochemical storage overview on electrochemical storage, including fundamentals of batteries and fuel cells. Limits and applications
- Electrolysis: theory and electrolyser design
- Fuel cells: theory and design

Experiments (2 EC):

· Electrolyser and fuel cell measurements

Adsorption (storage) measurements

School(s)

Institute of Engineering

share your talent. move the world.

Although every effort has been taken to ensure the accuracy of the information in the ECTS Course Catalogue, we cannot guarantee that the content and the information contained in it is always up-to-date, complete or true. Accordingly, no rights can be derived from the contents of the catalogue.