

Vak: Reliability Engineering

Vakcode
Naam
Studiejaar
ECTS credits
Taal
Coördinator

ELVH19ARE Reliability Engineering 2022-2023 3 Engels B.D. Williams Werkvormen

Hoorcollege Practicum / Training

Toetsen

Reliability Engineering - Opdracht

credits: 3

Leeruitkomsten

The student:

- analyses quality and reliability of a design by understanding and applying some typical design methodology tools such as those used in 'TQM, DMAIC, DFSS, HAZOP, FMEA, MuSCow, Guage R&R;
- finds acceptable tolerances of a design based on worst-case and statistical tolerancing methods.

Inhoud

No one disputes the need for systems to be reliable1. But how do you design a product that performs without failure for a stated period of time? Engineering education is traditionally concerned with teaching how you can build a prototype of a product. The ways in which products fail, the effect of failure and aspects of design manufacture, maintenance and use which affects the likelihood of failure are not usually taught. Basic parameters like mass, dimensions, friction coefficients, strength and stresses are never absolute but subject to variability1. Understanding the cause and effect of variability is necessary for the creation of reliable products. In this study unit you will learn how to assess the possible failures and its effects (risks). You will learn to use probability testing for reliability assessment purpose. You will also learn modelling methods to model the variation in the design.

Once you have assessed the variation and the risks associated with your product you can start to (re)design your product towards a more reliable product. Several methods of mitigation will be taught. You will learn about feedback and control, simulations, software improvements and design excellence.

Typical aspects that will be covered could include

- Introduction Quality systems
- QFD (Quality Function Deployment)
- FMEA (Failure Means and Effects Analysis)
- SIPOC (Supplier, Input, Product, Output, Customer product map)
- Benchmarking
- Risk assessment
- Gage R&R
- Characterization
- Transfer functions
- Process capability models
- Tolerance design
- Product validation, product verification
- Control Plan
- Quality plan
- Continue improvement (control systems/SPC, tracking systems)

[1]Practical Reliability Engineering, 4th Edition, Patrick O'Connor, Wiley 2002, ISBN 978-0-470-84463-2

Opgenomen in opleiding(en)

Exchange Technology to Innovate (autumn) Elektrotechniek Major Sensor Technology Minor Technology to Innovate

School(s)

Instituut voor Engineering

De ECTS onderwijscatalogus van de Hanzehogeschool Groningen wordt met de grootst mogelijke zorg samengesteld. Het is echter mogelijk dat de inhoud van de catalogus -en de daarin vervatte informatie- verouderd, incompleet of onjuist is. Aan de inhoud van de catalogus kunnen dan ook geen rechten worden ontleend.