

Vak: Solar Energy credits: 5

Vakcode ZWVH21SLE Naam Solar Energy Studiejaar 2022-2023

ECTS credits 5
Taal Engels
Coördinator A.A. Bellekom

Werkvormen Practicum / Training

Werkcollege

Toetsen Assignment SLE - Overige toetsing

Lab SLE - Overige toetsing

Solar Energy Theory - Schriftelijk, organisatie

ToetsCentrum

Leeruitkomsten

After the completion of the module the student is able to:

- understand, analyse and optimize the design and operation of solar cells, modules and systems, and to a lesser extent of solar thermal energy systems
- analyse and evaluate the similarities and differences between the various technological approaches towards solar energy conversion
- apply the specific features of solar energy systems for integration in the portfolio of energy technologies
- analyse, synthesize and critically evaluate information and findings in the field of solar energy and present it in a clear, factbased and convincing way
- perform calculations of solar cell device operation and of power and energy production
- make basic PV system dimensioning calculations and simulations
- measure some of the main performance indicators of solar panels
- communicate plans and results with other members of the group and effectively discuss problems encountered.
- present information and findings in the field of solar energy in a clear, fact-based and convincing way
- describe lessons learned and explain them to professional colleagues with a similar background, but without the specific knowledge of the lessons learned.

Inhoud

In terms of scientific and technical contents this module will treat the following aspects of solar

eneray:

The solar resource: properties of sunlight, insolation (amount of sunlight available)

Solar energy conversion technologies compared (electricity, heat, fuels)

Photovoltaic conversion:

- the PV sector in a bird's eye view: general introduction to history, markets, scenarios, roadmaps, etc.
- basic conversion process and efficiency limitations;
- properties of semiconductors, semiconductor processing and basic semiconductor devices;
- basic solar cell design and operation, including current-voltage characteristics spectral response and quantum efficiency;
- efficiency determining factors, routes to (very) high efficiencies, Standard Test Conditions (STC-) and non-STC (i.e. field) operation;
- photovoltaics in practice: different technologies in lab and production (flat plate and concentrator), various device architectures;
- from cells to modules: module architectures, manufacturing, lifetime & reliability, efficiency definitions, field performance;
- from modules to systems: basic aspects of system design, systems losses and energy production (specific energy yield, performance ration, capacity factor, etc.)
- practical applications: examples of PV systems and their performance;
- economic aspects: system cost (price) components and their evolution, Levelized Cost of Energy(LCoE), grid parity and other indicators:
- environmental aspects: Life Cycle Analyses (LCA), energy payback time, materials availability (supply chain), Cradle-to-Cradle and design-for-recycling approaches.

Solar heat:

- general introduction to solar heat
- basic aspects and formulas of heat
- basic aspects of solar radiation
- short introduction to heating systems
- overview of solar thermal collectors
- · overview of heat storage types
- short introduction to solar cooling

•

-short introduction to solar thermal electric power systems

Opgenomen in opleiding(en)

European Master in Renewable Energy

School(s)

Instituut voor Engineering

share your talent. move the world.

De ECTS onderwijscatalogus van de Hanzehogeschool Groningen wordt met de grootst mogelijke zorg samengesteld. Het is echter mogelijk dat de inhoud van de catalogus -en de daarin vervatte informatie- verouderd, incompleet of onjuist is. Aan de inhoud van de catalogus kunnen dan ook geen rechten worden ontleend.